Water Data and Formulas | | | _ | | _ | | | |---|----------|------------|--------------|--------------|--------------|--------------| | 1 gallon water = 231 cubic inches = 8.333 pounds | L | | • | | arge for a C | | | 1 pound of water = 27.7 cubic inches | Distance | N | Iominal Pip | e Diamete | er D (inches | 3) | | 1 cubic foot water = 7.5 gallons = 62.5 pounds (salt water | (inches) | 5 | 6 | 8 | 10 | 12 | | weighs approximately 64.3 pounds per cubic foot) | 5 | 163 | 205 | | | | | Pounds per square inch at bottom of a column of water = | 6
7 | 195
228 | 285
334 | 580 | | | | height of column in feet x .434 | 8 | 260 | 380 | 665 | 1060 | | | 1 miner's inch = 9 to 12 gallons per minute | 9
10 | 293 | 430 | 750 | 1190 | 1660 | | 1 miller 3 mon = 3 to 12 gallons per millate | 10 | 326
360 | 476
525 | 830
915 | 1330
1460 | 1850
2020 | | Horsepower to Raise Water | 12 | 390 | 570 | 1000 | 1600 | 2220 | | If pumping liquid other than water, multiply the gallons per | 13 | 425 | 620 | 1080 | 1730 | 2400 | | minute below by the liquids specific gravity | 14
15 | 456
490 | 670
710 | 1160
1250 | 1860
2000 | 2590
2780 | | Horsepower = gallons per minute x total head in feet | 16 | 520 | 760 | 1330 | 2120 | 2960 | | 3960 | 17 | 550 | 810 | 1410 | 2260 | 3140 | | Gallons Per Minute through a Pipe GPM = .0408 x pipe diameter inches ² x feet/minute water | 18 | 590 | 860 | 1500 | 2390 | 3330 | | velocity | 19
20 | 620
650 | 910
950 | 1580
1660 | 2520
2660 | 3500
3700 | | • | 21 | 685 | 1000 | 1750 | 2800 | 3890 | | Weight of Water in a Pipe | 22 | 720 | 1050 | 1830 | 2920 | 4060 | | Pounds water = pipe length feet x pipe diameter inches ² x .34 | 23
24 | 750 | 1100
1140 | 1910
2000 | 3060
3200 | 4250
4440 | | | 24 | | 1140 | 2000 | 3200 | 4440 | ## **Water Discharge Table** This table is intended for general reference and general applicability only, and should not be relied upon as the sole or precise source of information available with respect to the subject covered. The user should also refer to and follow manufacturer's specific instructions and recommendations with regard to such information, where they exist. Flow of water through 100 foot lengths of hose, Straight-Smooth Bore - U.S. Gallons per minute | PSI at | | | Non | ninal Hose ID I | Diameters - Ind | ches | | | |--|--|---|---|--|---|--|---|---| | Hose
Inlet | 1" | 1-1/4" | 1-1/2" | 2" | 2-1/2" | 3" | 4" | 6" | | 20
30
40
50
60
75
100
125
150
200 | 26
32
38
43
47
53
62
70
77
90 | 47
58
68
77
85
95
112
126
139 | 76
94
110
124
137
154
180
203
224 | 161
200
234
264
291
329
384
433
478
558 | 290
360
421
475
524
591
690
779
859
1004 | 468
582
680
767
846
955
1115
1258
1388
1621 | 997
1240
1449
1635
1804
2035
2377
2681
2958
3455 | 2895
3603
4209
4748
5239
5910
6904
7788
8593
10038 | Figures are to be used as a guide since the hose inside diameter tolerance, the type of fittings used, and orifice restriction all influence the actual discharge. Thus, variations plus or minus from the table may be obtained in actual service. ## **Conversion Table - Feet of Water to Inches of Mercury** | Feet of
Water | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | |----------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|------| | Inches of
Mercury | 0.9 | 1.8 | 3.5 | 5.3 | 7.1 | 8.8 | 10.6 | 12.4 | 14.1 | 17.7 | 19.4 | 21.2 | 23.0 | 24.8 | 26.5 | 28.3 | 30.0 | #### Feet Head of Water to PSI | Feet Head | Pounds per
Square Inch | |---|--|--|--|--|--|---|--| | 1
2
3
4
5
6
7
8
9 | 0.43
0.87
1.30
1.73
2.17
2.60
3.03
3.46
3.90
4.33 | 15
20
25
30
40
50
60
70
80
90 | 6.50
8.66
10.83
12.99
17.32
21.65
25.99
30.32
34.65
38.98 | 100
110
120
130
140
150
160
170
180
200 | 43.31
47.64
51.97
56.30
60.63
64.96
69.29
73.63
77.96
86.62 | 250
300
350
400
500
600
700
800
900
1000 | 108.27
129.93
151.58
173.24
216.55
259.85
303.16
346.47
389.78
433.00 | Note: One foot of water at 62° F equals 0.433 PSI. To find the PSI for any feet head not given in the table, multiply the feet head by 0.433. # Maximum Recommended Air Flow (SCFM) Through ANSI Standard Weight Schedule 40 Metal Pipe The flow values in the table below are based on a pressure drop of 10% of the applied pressure per 100 feet of pipe for 1/8", 1/4", 3/8", and 1/2" pipe sizes; and a pressure drop of 5% of the applied pressure per 100 feet of pipe for 3/4", 1", 1-1/4", 2", 2-1/2", 3" pipe sizes. The table gives recommended flows for pipe sizes at listed pressures and should be used to determine appropriate piping for air systems. | Applied | | | | | Nominal | Standard I | Pipe Size | | | | | |--|--|---|---|--|--|---|---|---|--|---|---| | Pressure
PSI | 1/8" | 1/4" | 3/8" | 1/2" | 3/4" | 1" | 1-1/4" | 1-1/2" | 2" | 2-1/2" | 3" | | 5
10
20
40
60
80
100
150
200 | 0.5
0.8
1.3
2.5
3.5
4.7
5.8
8.6
11.5 | 1.2
1.7
3.0
5.5
8.0
10.5
13.0
20.0
26.0
33.0 | 2.7
3.9
6.6
12.0
18.0
23.0
29.0
41.0
58.0
73.0 | 4.9
7.7
13.0
23.0
34.0
44.0
54.0
80.0
108.0
135.0 | 6.6
11.0
18.5
34.0
50.0
65.0
80.0
115.0
155.0
200.0 | 13
21
35
62
93
120
150
220
290
370 | 27
44
75
135
195
255
315
460
620
770 | 40
64
110
200
290
380
470
680
910
1150 | 80
125
215
385
560
720
900
1350
1750
2200 | 135
200
350
640
900
1200
1450
2200
2800
3500 | 240
370
600
1100
1600
2100
2600
3900
5000
6100 | ## Air Supply Requirements (operating pressure: 90 PSI) | | | ` <u> </u> | | | | |--------------------------|--|----------------------------------|----------------------------|--------------------------|--------------------------| | Tool | Class | Transcal Air Concumention (CEMA) | Н | ose Size (inche | s) | | Tool | Class | Typical Air Consumption (CFM) | 0-10 ft. | 10-50 ft. | 50-200 ft. | | Paving Breakers | 25 lb.
35 lb.
60 lb.
80 lb. | 45
50
65
80 | 1/2
1/2
1/2
3/4 | 1/2
3/4
3/4
3/4 | 3/4
3/4
1
1 | | Claydiggers | | 45 | 1/2 | 1/2 | 3/4 | | Hand Drills | 8 lb.
15 lb. | 20
32 | 3/8
3/8 | 3/8
1/2 | 1/2
1/2 | | Rock (Sinker) Drills | 45 lb.
55 lb. | 105
130 | 3/4
3/4 | 3/4
1 | 1 1 | | Tampers | 5" butt
6" butt | 20
30 | 3/8
1/2 | 1/2
1/2 | 1/2
3/4 | | Sump Pump
Sludge Pump | 3 HP
Ejector | 100
90 | 3/4
1 | 3/4
1 | 1 1 | | Vibrators | 2-1/2"
3" | 60
60 | 1
1 | 1 1 | 1 1 | | Chipping Hammers | | 25 | 3/8 | 1/2 | 1/2 | | Impact Wrenches | 3/8" sq. dr.
1/2"
3/4"
1" | 10
15
25
50 | 5/16
5/16
3/8
1/2 | 3/8
3/8
1/2
3/4 | 3/8
1/2
1/2
3/4 | | Drills | 1/4" - 1/2" | 22 | 3/8 | 3/8 | 1/2 | | Grinders | die/burr
small angle
3 HP vertical | 20
20
75 | 3/8
3/8
1/2 | 3/8
3/8
3/4 | 1/2
1/2
1 | #### **CFM vs PSI for Nozzles** | Gauge | | | CFM Fre | ee Air Flow @ | Nozzle Diamet | er (Inch) | | | |-------|------|------|---------|---------------|---------------|-----------|-------|-------| | PSI | 1/64 | 1/32 | 3/64 | 1/16 | 3/32 | 1/8 | 3/16 | 1/4 | | 1 | .03 | .11 | .2 | .4 | 1.0 | 1.7 | 3.9 | 6.8 | | 5 | .06 | .24 | .5 | 1.0 | 2.2 | 3.9 | 8.7 | 15.4 | | 10 | .08 | .34 | .8 | 1.4 | 3.1 | 5.4 | 12.3 | 21.8 | | 15 | .10 | .42 | .9 | 1.6 | 3.7 | 6.6 | 15.0 | 26.7 | | 20 | .12 | .48 | 1.1 | 1.9 | 4.2 | 7.7 | 17.1 | 30.8 | | 25 | .13 | .54 | 1.2 | 2.2 | 4.7 | 8.6 | 19.4 | 34.5 | | 30 | .16 | .63 | 1.4 | 2.5 | 5.6 | 10.0 | 22.5 | 40.0 | | 40 | .19 | .77 | 1.7 | 3.1 | 6.8 | 12.3 | 27.5 | 49.1 | | 50 | .22 | .91 | 2.0 | 3.6 | 8.2 | 14.5 | 32.8 | 58.2 | | 60 | .26 | 1.05 | 2.3 | 4.2 | 9.4 | 16.8 | 37.5 | 67.0 | | 70 | .29 | 1.19 | 2.7 | 4.8 | 10.7 | 19.0 | 43.0 | 76.0 | | 80 | .33 | 1.33 | 3.0 | 5.3 | 11.9 | 21.2 | 47.5 | 85.0 | | 90 | .36 | 1.47 | 3.3 | 5.9 | 13.1 | 23.5 | 52.5 | 94.0 | | 100 | .40 | 1.61 | 3.7 | 6.4 | 14.5 | 25.8 | 58.3 | 103.0 | | 110 | .43 | 1.76 | 3.9 | 7.0 | 15.7 | 28.0 | 63.0 | 112.0 | | 120 | .47 | 1.90 | 4.30 | 7.6 | 17.0 | 30.2 | 68.0 | 121.0 | | 130 | .50 | 2.04 | 4.6 | 8.1 | 18.2 | 32.4 | 73.0 | 130.0 | | 140 | .54 | 2.17 | 4.9 | 8.7 | 19.5 | 34.5 | 78.0 | 138.0 | | 150 | .57 | 2.33 | 5.2 | 9.2 | 20.7 | 36.7 | 83.0 | 147.0 | | 175 | .66 | 2.65 | 5.9 | 10.6 | 23.8 | 42.1 | 95.0 | 169.0 | | 200 | .76 | 3.07 | 6.9 | 12.2 | 27.5 | 48.7 | 110.0 | 195.0 | PSI = pounds/square inch; CFM = cubic feet/minute #### **Formulas** #### Air Velocity in a Pipe Using the equation and typical values of V, D and L explained to the right approximate values of P are computed as follows: | Velocity | F | Pipe Diame | eter in Inch | es, 10' lon | g | |----------|-------|------------|--------------|-------------|--------| | Ft/Sec | 1 | 2 | 4 | 6 | 10 | | 1 | .0004 | .0002 | .0001 | .00007 | .00004 | | 2 | .0016 | .0008 | .0004 | .00030 | .00016 | | 5 | .0100 | .0050 | .0025 | .00170 | .0010 | | 10 | .0400 | .0200 | .0100 | .00670 | .0040 | | 15 | .0900 | .0450 | .0225 | .01500 | .0090 | | 20 | .1600 | 0800 | .0400 | .02700 | .0160 | | 25 | .2500 | .1250 | .0625 | .04170 | .0250 | | 30 | .3600 | .1800 | .0900 | .06000 | .0360 | | | | | | | | $$V = \sqrt{\frac{25,000 \text{ DP}}{L}}$$ V = air velocity in feet per second D = pipe inside diameter in inches L = length of pipe in feet P = pressure loss due to air friction in ounces/square inch formula from B.F.Sturtevant Company ## **Air Volume Discharged from Pipe** CFM = air volume in cubic feet per minute V = air velocity in feet per second as determined in the equation at the top of this page A = cross section area of pipe in square feet CFM = 60VA #### **Boyle's Law** If temperature is kept constant, the volume of a given mass of gas is inversely proportional to the pressure which is exerted upon it. Initial Pressure Final Pressure Final Volume Initial Volume ## Suggested Pipe Size for Compressed Air Flow at 100 PSI Length of Run, Feet | SCFM
Air Flow | 25 | 50 | 75 | 100 | 150 | 200 | 300 | 500 | 1000 | Compressor
HP | |------------------|------|------|------|------|------|------|------|------|------|------------------| | 4 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 3/4 | 3/4 | 1 | | 12 | 1/2 | 1/2 | 1/2 | 3/4 | 3/4 | 1/2 | 3/4 | 1 | 1 | 3 | | 20 | 3/4 | 3/4 | 3/4 | 3/4 | 1 | 3/4 | 1 | 11/4 | 11/4 | 5 | | 30 | 3/4 | 3/4 | 1 | 1 | 1 | 1 | 11/4 | 11/4 | 11/4 | 7½ | | 40 | 3/4 | 1 | 1 | 1 | 11/4 | 1 | 11/4 | 1½ | 11/2 | 10 | | 60 | 1 | 1 | 11/4 | 11/4 | 11/4 | 11/4 | 11/2 | 1½ | 2 | 15 | | 80 | 1 | 11/4 | 11/4 | 11/4 | 1½ | 11/4 | 11/2 | 2 | 2 | 20 | | 100 | 11/4 | 11/4 | 1½ | 11/2 | 1½ | 11/2 | 2 | 2 | 21/2 | 25 | | 120 | 11/4 | 1½ | 1½ | 1½ | 2 | 1½ | 2 | 21/2 | 21/2 | 30 | | 160 | 11/4 | 1½ | 1½ | 2 | 2 | 1½ | 21/2 | 21/2 | 3 | 40 | | 200 | 1½ | 2 | 2 | 2 | 2 | 2 | 21/2 | 3 | 3 | 50 | | 240 | 1½ | 2 | 2 | 2 | 21/2 | 2 | 21/2 | 3 | 3 | 60 | | 300 | 2 | 2 | 2 | 21/2 | 21/2 | 2 | 3 | 3 | 31/2 | 75 | | 400 | 2 | 21/2 | 21/2 | 21/2 | 3 | 21/2 | 3 | 31/2 | 4 | 100 | | 500 | 2 | 21/2 | 21/2 | 3 | 3 | 21/2 | 31/2 | 31/2 | 4 | 125 | On a compressed air distribution system, pressure losses greater than 3% are considered excessive, and a well-designed system having a steady rate of air flow is usually designed for not more than a 1% loss or 1 PSI for a 100 PSI system. The pipe size depends not only on the volume of air flow but how far it must be carried. To hold the distribution loss to 1 PSI, pipes of larger diameter must be used on longer runs to carry the same flow that can be handled by smaller pipes on shorter runs. Figures in the body of the chart above are pipe sizes recommended on a 100 PSI system to carry air with less than 1 PSI loss. When measuring lengths of runs, add 5' of length for each pipe fitting. If carrying 120 PSI pressure these sizes will carry slightly more air than shown, or pressure loss will be slightly less than 1 PSI. If carrying 80 PSI pressure these pipes will carry slightly less air at 1 PSI pressure loss than shown in the chart. The left column of the chart shows the volume of air to be carried. It is difficult to estimate the air flow volume to be carried in each leg of the distribution system. This varies with the application. On some applications, like in a large plant with many legs in the distribution system serving dozens of air-operated machines, the air usage may be at a fairly steady rate. Other applications, usually on small systems, may have to carry a high surge of air if several machines happen to be operated at the same time. Then there may be a period with almost no flow. To make a realistic estimate of air flow volume, the far right column of the chart showing compressor HP may be used. On steady pumping, a compressor will produce a minimum of 4 SCFM air flow for each 1 HP of capacity. This is a conservative figure, as most compressors will produce 5 or 6 SCFM. For example, a 25 HP compressor will produce at least 100 SCFM of air as shown in the far left column on the same line as 25 HP. excerpted from Industrial Fluid Power, Volume 1, third edition, 1984 665 ## **Air Receiver Capacities** If your tank is not listed in the table to the right, use the following formula to calculate the tank size (gallons) and then estimate the cubic feet tank capacity at a given pressure from the table above. Tank Gallons = $\frac{\text{Tank Height x (Tank Radius)}^2}{73.53}$ Height and Radius are in inches | Tank | Tank | Gau | ge Pressur | e on Tank | (PSI) | |----------|-----------|------|-------------|-----------|-------| | Size | Size | 0 | 100 | 150 | 200 | | (inches) | (gallons) | Cı | ubic Feet T | ank Capac | city | | 12 x 24 | 10 | 1.3 | 11 | 15 | 19 | | 14 x 36 | 20 | 2.7 | 21 | 30 | 39 | | 16 x 36 | 30 | 4.0 | 31 | 45 | 59 | | 20 x 48 | 60 | 8.0 | 62 | 90 | 117 | | 20 x 63 | 80 | 10.7 | 83 | 120 | 156 | | 24 x 68 | 120 | 16.0 | 125 | 180 | 234 | | 30 x 84 | 240 | 32.0 | 250 | 360 | 467 | #### **Air Hose Friction** | | | | Gauge Pressure | - Pounds/sq inc | h | |-----------------------|----------------------|------|----------------|-----------------|----------------| | Hose Size
(inches) | CFM thru
50' Hose | 50 | 70 | 90 | 110 | | (mones) | 30 11030 | | PSI Loss Over | 50' Hose Length | | | | 20 | 1.8 | 1.0 | .8 | .6 | | | 30 | 5.0 | 3.4 | 2.4 | 2.0 | | | 40 | 10.1 | 7.0 | 5.4 | 4.3 | | 1/11 | 50 | 18.1 | 12.4 | 9.5 | 7.6 | | 1/2" | 60 | + | 20.0 | 14.8 | 12.0 | | | 70 | + | 28.4 | 22.0 | 17.6 | | | 80 | + | + | 30.5 | 24.6 | | | 90 | + | + | 41.0 | 33.3 | | | 10 | + | + | + | 44.5 | | | 110 | + | + | + | + | | | 20 | 04 | .2 | .2 | .1 | | | 30 | .08 | .5 | .4 | .3 | | | 40 | 1.5 | .9 | .7 | .5 | | | 50 | 2.4 | 1.5 | 1.1 | .9 | | 3/4" | 60 | 3.5 | 2.3 | 1.6 | 1.3 | | | 70 | 4.4 | 3.2 | 2.3 | 1.8 | | | 80 | 6.5 | 4.2 | 3.1 | 2.4 | | | 90 | 8.5 | 5.5 | 4.0 | 3.1 | | | 100 | 11.4 | 7.0 | 5.0 | 3.9 | | | 110 | 14.2 | 8.8 | 6.2 | 4.9 | | | 120 | + | 11.0 | 7.5 | 5.9 | | | 130 | + | + | 9.0 | 7.1 | | | 20 | .1 | 0 | 0 | C | | | 30 | .2 | .1 | .1 | .1 | | | 40 | .3 | .2
.4 | .2 | .2 | | | 50 | .5 | .4 | .3 | .2
.2
.3 | | | 60 | .8 | .5 | .4 | .3 | | 1" | 70 | 1.1 | .7 | .6 | .4 | | I | 80 | 1.5 | 1.0 | .7 | .6 | | | 90 | 2.0 | 1.3 | .9 | .7 | | | 100 | 2.6 | 1.6 | 1.2 | .9 | | | 110 | 3.5 | 2.0 | 1.4 | 1.1 | | | 120 | 4.8 | 2.5 | 1.7 | 1.3 | | | 130 | 7.0 | 3.1 | 2.0 | 1.5 | PSI = pressure in pounds/square inch CFM = air flow in cubic feet/minute ⁺ pressure loss is too great and therefore the combination of Hose Size, CFM, and Gauge Pressure is not recommended. Gauge Pressures the indicated air pressure in pounds/square inch, at the source (i.e. the air compressor receiver tank)